DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.

نویسندگان

  • Lindsay F Rizzardi
  • Elizabeth S Dorn
  • Brian D Strahl
  • Jeanette Gowen Cook
چکیده

DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Histone H3 Methylation at Lysine 4 Triggers Apoptosis in Saccharomyces cerevisiae

Monoubiquitination of histone H2B lysine 123 regulates methylation of histone H3 lysine 4 (H3K4) and 79 (H3K79) and the lack of H2B ubiquitination in Saccharomyces cerevisiae coincides with metacaspase-dependent apoptosis. Here, we discovered that loss of H3K4 methylation due to depletion of the methyltransferase Set1p (or the two COMPASS subunits Spp1p and Bre2p, respectively) leads to enhance...

متن کامل

Conservation of ARS elements and chromosomal DNA replication origins on chromosomes III of Saccharomyces cerevisiae and S. carlsbergensis.

DNA replication origins, specified by ARS elements in Saccharomyces cerevisiae, play an essential role in the stable transmission of chromosomes. Little is known about the evolution of ARS elements. We have isolated and characterized ARS elements from a chromosome III recovered from an alloploid Carlsberg brewing yeast that has diverged from its S. cerevisiae homeologue. The positions of seven ...

متن کامل

In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse

Methylation of cytosines (5(me)C) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here, we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the act...

متن کامل

Regulation of DNA replication and chromosomal polyploidy by the MLL-WDR5-RBBP5 methyltransferases

DNA replication licensing occurs on chromatin, but how the chromatin template is regulated for replication remains mostly unclear. Here, we have analyzed the requirement of histone methyltransferases for a specific type of replication: the DNA re-replication induced by the downregulation of either Geminin, an inhibitor of replication licensing protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. ...

متن کامل

Ku complex controls the replication time of DNA in telomere regions.

We have investigated whether the Ku complex is involved in regulating DNA replication in the yeast Saccharomyces cerevisiae. We find that Ku proteins control the replication time of telomeric regions; replication origins located close to telomeres or within subtelomeric repeat sequences normally initiate late, but are activated much earlier in mutants lacking Ku function. In contrast, origins d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 192 2  شماره 

صفحات  -

تاریخ انتشار 2012